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This study investigated the genetic population structure of the regionally endemic rainforest fish

Cairnsichthys rhombosomoides by analysing sequence variation in the mitochondrial control

region. The results indicated that individual populations, even those located in close proximity

(5 km), were highly distinct. The pattern of genetic structure cannot be explained by physical

barriers to gene flow and was not consistent with models based on separation of populations by

distance or any hierarchical structuring within the riverine network. The management

implications of the observed genetic structure are discussed. # 2008 The Authors
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INTRODUCTION

Investigations into the mechanisms creating population genetic structure in
stream organisms, especially fish, have mostly focused on physical barriers that
reduce gene flow between populations. Examples of these processes include
fluctuating Pleistocene sea levels that result in intermittent seawater barriers
(Hänfling et al., 2002; Near et al., 2003; Perdices et al., 2003), volcanism leading
to drainage rearrangements (McGlashan & Hughes, 2000; Stewart, 2001) and
barriers to migration within drainages such as waterfalls (Currens et al., 1990;
Carlsson & Nilsson, 1999; Taylor et al., 2003). The influence of physical barriers
on gene flow generally results in a genetic signature where populations within
the same tributaries or sub-catchments are more genetically similar than those
in adjacent catchments (Meffe & Vrijenhoek, 1988; Keenan, 1994; Hernandez-
Martich & Smith, 1997).
Biological barriers to gene flow (e.g. intrinsic behaviour such as philopatry or

interspecific interactions such as competition or predation) can also play a role

‡Author to whom correspondence should be addressed. Tel.: þ61(0) 897568612; fax: þ61(0) 897568612;

email: bpusey@westnet.com.au

Journal of Fish Biology (2008) 72, 1174–1187

doi:10.1111/j.1095-8649.2007.01768.x, available online at http://www.blackwell-synergy.com

1174
# 2008 The Authors

Journal compilation # 2008 The Fisheries Society of the British Isles



in the genetic structure of stream organisms. For instance, strong natal homing
for spawning sites, combined with low frequency of straying, can create pat-
terns of genetic differentiation in salmonid populations (Stabell, 1984; Elliott,
1994; Ferguson et al., 1995). However, examples of strong genetic structuring,
as a result of biological barriers to gene flow, remain poorly studied compared
with those that cite mechanisms of a physical nature.
Cairnsichthys rhombosomoides (Nichols & Raven, 1928) is a conservationally

significant, geographically restricted and regionally endemic rainbowfish of the
Australian Wet Tropics, which may offer an unique opportunity to investigate
the potential for biological barriers to produce patterns of genetic population
structure in streams. This species has an intriguing pattern of distribution in that
although it is typically restricted to and most common in small streams with an
intact riparian canopy (mean catchment area <6 km2, mean stream width <6 m
and mean riparian cover 56�5%), such small streams may occur over a compara-
tively wide elevation range (0–100 m a.s.l.) and include headwater streams as
well as short lowland adventitious tributary streams (Pusey et al., 2004). Accord-
ingly, the types of habitats in which it occurs range from headwater cascade/step
pool habitats with high gradients (maximum 7�33%) to low gradient (0�02%)
streams meandering through lowland coastal swamps. The type of substrate
found across this range varies from being dominated by bedrock and rocks with
very little organic matter through to mud and sand substrates covered in detritus
and leaf litter. Average water velocities in these habitats are typically low (<0�15 m
sec�1) but may be as high as 0�5 m sec�1. Heterogeneity in physico-chemical para-
meters is common across the range of streams inhabited by C. rhombosomoides to
the extent that this variation encompasses all values of these same parameters
observed at lower order sites where C. rhombosomoides is consistently absent
(Pusey et al., 2004). Despite there being no obvious physical barriers to dispersal,
extensive sampling over the full range of stream habitats present within rivers of
the region has never revealed the presence of C. rhombosomoides in lower order
stream channels (i.e. those streams connecting the spatially disparate streams
described) (Pusey & Kennard, 1996; Pusey et al., 2004).
The conservation status of C. rhombosomoides has been variously listed as

vulnerable or rare (Pusey et al., 2004). It has been suggested that the spatially
segregated distribution of C. rhombosomoides renders local populations suscep-
tible to local extirpation (Pusey et al., 2004, 2008) if dispersal between popula-
tions is limited. The present investigation is aimed at determining whether local
populations do indeed show distinct genetic structure indicative of reduced
gene flow and to suggest possible mechanisms for restricted gene flow in the
absence of physical barriers.

METHODS

STUDY AREA, SITE SELECTION AND GENETIC SAMPLING

Eighty-nine individuals of C. rhombosomoides were collected by dip-netting during the
dry season (June to August 2004) from 10 stream sites within drainages spread across
most of the species’ distributional range in the Queensland Wet Tropics Bioregion
(Fig. 1). Sites were selected to allow three replicated distance comparisons among
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populations with: (1) no saltwater barriers to movement (permanent freshwater link-
age), (2) intermittent saltwater barriers to movement (estuarine confluence) and (3) full
saltwater barriers to movement (inter-drainage populations). A small (c. 0�3 cm2) caudal
fin clip was taken from each fish. Fish were returned to the stream after completion of
sampling at each site.

DNA MARKER SELECTION, DNA EXTRACTION,
AMPLIFICATION AND SEQUENCING

Total genomic DNA was extracted using a Qiagen� DNA-Easy extraction kit and
resuspended in 200 ml of elution buffer. A 400 base pair (bp) fragment of domain 1

FIG. 1. Map illustrating sample sites for genetic analysis of Cairnsichthys rhombosomoides. Site abbrevia-

tions are as follows: Behana Creek (BC), unnamed creek at Aloomba (AL), Figtree Creek (FT) and

Harvey Creek (HC); three within the South Johnstone system, Polly Creek (PC), unnamed South

Johnstone Creek (SJR) and Boolabah Creek (BL); and three within the Liverpool system, Meuribah

Creek (MU), Upper Liverpool Creek (ULC) and South Liverpool Creek headwaters (SLC).
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of the mtDNA control region was amplified using the polymerase chain reaction
(PCR) and two oligonucleotide primers. The heavy strand primer (MT16498H; 59
CCT GAA GTA GGA ACC AGA TG 39; Meyer et al., 1990) is located in the con-
served central domain of the control region. The light-strand primer [L19; 59 ACC
ACT AGC ACC CAA AGC TA 39 modified from (Bernatchez & Danzmann,
1993)] occurs in the proline tRNA gene, which flanks the control region. PCR reac-
tions contained 1�25 ml dNTPS (combined, 25 mM), 1�25 ml of 50 mM MgCl, 1�25 ml
of 10� buffer (MgCl2), 1�25 ml of 1 mmol of each primer, 0�125 ml Taq, 15–20 mg
genomic DNA in a 12�5 ml reaction volume. Thermocycling protocols were as follows:
initial denaturing 94° C for 1 min, then 30 cycles of 94° C denaturing for 30 s; 50° C
annealing for 30 s; 72° C extension for 1 min and a final extension step of 72° C for 5 min;
PCR product was subject to spin column purification (UltraClean�, MO BIO Inc.)
following manufacturer specifications and sequenced using Big Dye� incorporation
(Applied BIOSYSTEMS, Foster City, CA, U.S.A.). Screening and purification of
sequencing products occurred in an ABI Prism� 377 automated DNA SEQUENCER
(Applied BIOSYSTEMS). Bidirectional sequences were aligned by eye and edited using
PROSEQ (version 2.91; Filatov 2002).

GENETIC ANALYSIS: ANALYSIS OF MOLECULAR
VARIANCE

An analysis of molecular variance (AMOVA) was performed on mtDNA control
region (domain 1) sequences to indirectly estimate contemporary levels of gene flow
based on the current distribution of genetic diversity among populations (Excoffier
et al., 1992). Three different hierarchical models were considered: model A grouped
populations into present drainage lines separated by oceanic saltwater barriers: i.e. Mul-
grave/Russel, South/North Johnstone and Liverpool catchment; model B placed all
lowland populations within a single group across all drainages. This model hypothesis
gene flow across drainages for lowland populations during peak wet season discharge
periods when freshwater extends out to sea but retains isolation of upland habitats;
and model C left all populations as independent units. The relative effectiveness of
the barrier proposed in each model was tested by comparing the alternative a priori
groupings to the most parsimonious hierarchical structure by AMOVA. This analysis
generates FST, an analogue of Wright’s FST that estimates the level of genetic diver-
gence among predefined population groupings using both the frequency and similarity
of haplotypes in different populations. The significance of FST values was determined
using 5000 permutations of a Markov chain analysis as described by Raymond &
Rouset (1995) in ARLEQUIN, version 2.00 (Schneider et al., 2000). The most parsimo-
nious structure was defined as that which maximized the genetic variation among pre-
defined groups while minimizing the variation among populations within those groups
(Congdon et al., 2002). When using AMOVA to assess contemporary gene flow, it is
assumed that effective population sizes are at equilibrium and have not undergone
recent bottlenecks or subsequent expansions (Excoffier et al., 1992). This assumption
was tested using a mismatch analysis (discussed below).

GENETIC ANALYSIS: ISOLATION BY DISTANCE

In addition to the predefined hierarchical group definitions, observed patterns of
population genetic structure may also be explained by an inter-population distance
effect. To test for such a distance relationship, the instream geographic distances
(km) between all C. rhombosomoides populations (calculated using 1:50 000 topgraphic
maps) were compared with the equivalent pair-wise genetic distances (linearized FST

from the AMOVA) using the statistical programme isolation by distance (IBD; Bohonak
2002). A Mantel test (Manly, 1994) was used to test for significance.
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GENETIC ANALYSIS: MISMATCH DISTRIBUTIONS AND
RAPID POPULATION EXPANSIONS

A mismatch analysis was used to test for a recent population expansion by compar-
ing the frequency distribution of pair-wise DNA sequence differences (mismatch distri-
bution) between all individuals to that expected under expansion or equilibrium models
(Rogers & Harpending, 1992; Congdon et al., 2000; Peck & Congdon, 2004). For a popu-
lation that has rapidly expanded recently, the mismatch distribution is unimodal and
approximates a Poisson curve, in contrast to the multi-modal mismatch distribution of
stable populations at equilibrium. Parametric bootstrapping tested observed mismatch
distributions against those expected under the sudden expansion model (Excoffier &
Schneider, 1999).

GENETIC ANALYSIS: TESTS OF NEUTRALITY

The population history of C. rhombosomoides and the potential for selection to
influence the findings of the AMOVA were assessed using an array of neutrality sta-
tistics that are capable of detecting the genetic traces of selection, population
growth, decline or stability. Tajima’s D test assumes that under neutrality, a random
sample of sequences (p) should have nucleotide differences that are equal to the
number of differences between the segregating (polymorphic) sites only (y). A popu-
lation expansion commonly causes a significant, negative departure from zero for
Tajima’s D (Tajima, 1989a, b), while selection causes significant positive values of
Tajima’s D.

Fu’s FS tests have also proven useful for detecting population growth (Fu, 1997),
by determining if a population has an excess of low frequency alleles, as expected
for an expanding population. To use Fu’s FS in this way, Fu’s and Li’s F* and D*
statistics were estimated. Such a comparison is necessary as a population expansion
can be distinguished from the effects of background selection by the pattern produced
from FS, F* and D* (Fu, 1997). A significant FS and non-significant F* and D* indi-
cates a range expansion, while the inverse suggests the pattern is driven by selection
(Fu, 1997; Joseph et al., 2002). All mismatch and neutrality statistics were performed
in DnaSP version 3, (Rozas & Rozas, 1999). An ‘expansion coefficient’ (S/d) was em-
ployed to assess differences between contemporary and historical population sizes,
where ‘S’ represents the ratio of variable sequence positions, relative to the mean
number of pair-wise nucleotide differences ‘d’ between haplotypes. A population that
has recently expanded is represented by a large value, while populations that have re-
mained stable and at equilibrium are denoted by small values (von Haeseler et al.,
1996).

RESULTS

MTDNA VARIATION

From the 400 bp of mtDNA control region assayed, 19 haplotypes were
identified with a total of 14 variable sites (Table I) (sequences submitted to
GenBank, accession number AY736195). The majority of haplotypes differed
by transitional substitutions, although several differences involved transver-
sions and three involved indels (insertions or deletions). One multibase (TA
or thymine-adenine) indel found in seven haplotypes appeared to be the result
of a replication error that has added or removed a single repeat unit of a small
microsatellite sequence. Therefore, this indel was treated as a single mutation
in further analysis.
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AMOVA: TESTS OF GENETIC STRUCTURE

None of the three basic a priori hierarchical models provided the most par-
simonious grouping of populations. In all three models, variation among popu-
lations within groups was significant, while variation among groups was low
and non-significant (Table II). The most parsimonious structure explaining
the patterns of genetic variation was obtained when all populations were left

TABLE I. Variable sites of 19 haplotypes detected within mtDNA control region (domain
1) for Cairnsichthys rhombosomoides. Dots indicate homology to h1, while dashes indicate
indels. Drainage and site is as indicated along with numbers of haplotypes that occur at
each site. HC, Harvey Creek; AL, Aloomba; BC, Behana Creek; PC, Polly Creek; SJR,
unnamed creek in South Johnstone; BL, Boolabah Creek; MU, Meuribah Creek; ULC,

Upper Liverpool Creek headwaters; SLC, South Liverpool Creek headwaters
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as independent units. This analysis identified 50�45% of the variation as
among-group variation (Table II). The pattern of population genetic structure
among sites indicates that it was not possible to predict the level of genetic
divergence between two populations based on the geographic distance that sep-
arates them (r2 ¼ 0�02, P > 0�05) (Fig. 2). Significant levels of genetic diver-
gence occurred between pairs of freshwater-linked populations over stream
distances as little as 5 km [FT (Figtree Creek)–AL (Aloomba); FST ¼ 0�17;
Fig. 2], with fixed differences among haplotype frequencies (no shared haplo-
types) being observed between freshwater-linked populations at 39 km [BL
(Boolabah Creek)–SJR (unnamed South Johnstone Creek)); FST ¼ 1�00;
Fig. 2]. Unique, site-specific haplotypes occurred at 13 sites (Table I), while
one headwater site (BL) was fixed for a unique allele.
All within-drainage populations separated by an intermittent estuarine con-

fluence were significantly divergent from each other (Fig. 2). The smallest in-
stream spatial scale at which this occurred was 15 km (FT–HC), with both
pair-wise comparisons across estuarine confluences at distances of >50 km dis-
playing fixed differences (PC–BL and SJR–PC; FST ¼100; Fig. 3). Interest-
ingly, two pair-wise comparisons of populations between drainages showed
these populations were not significantly different from each other (AL–MU
and AL–SLC). To ensure that fixed populations in the South Johnstone River
did not bias the overall pattern of genetic structuring, all AMOVA and IBD
analyses were repeated with the South Johnstone River populations removed.
Their removal did not change the overall results obtained (data not shown).

TABLE II. AMOVA results for different hierarchical models of Cairnsichthys rhomboso-
moides populations from mtDNA control region (domain 1) sequences. P-values were
generated using 5000 permutations. Models placed populations into groups as follows,
(A) placed all populations into respective drainage lines, (B) inland headwater popula-
tions into respective drainage lines v. coastal lowland populations within their drainage
lines and (C) same as (B) except lowland coastal populations are grouped as a single unit

across all drainages

Hierarchical models Variance component
% total
variance F-statistics P

All populations independent Among groups 50�45 0�51 <0�001
Within populations 49�55 n/a <0�001

(A) Drainage Among groups 3�86 0�04 0�14
Among populations

within groups
42�25 0�44 <0�001

Within populations 53�89 0�46 <0�001
(B) Inland headwater

isolation/coastal
lowland isolation

Among groups 9�64 0�10 0�02
Among populations

within groups
37�51 0�42 <0�001

Within populations 52�85 0�47 <0�001
(C) Inland headwater

isolation/coastal
connectivity

Among groups 14�8 0�15 0�04
Among populations

within groups
32�03 0�38 <0�001

Within populations 53�17 0�47 <0�001
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MISMATCH DISTRIBUTIONS AND TESTS OF NEUTRALITY

A minimum spanning haplotype network of base pair changes (Fig. 3)
showed a star-shaped pattern of relationships with most haplotypes being only
one or two base pair changes apart. This pattern is consistent with C. rhombo-
somoides having undergone a recent and rapid population expansion (Slatkin &
Hudson, 1991). Seven populations had unique site-specific haplotypes (Table I).
When all C. rhombosomoides mtDNA sequences were pooled, the observed mis-
match distribution was a close fit to that expected under a model of population
expansion [Fig. 4(a)]. This same distribution departs significantly from that ex-
pected under a stable population model at equilibrium [Fig. 4(b)].
No evidence of selection in the mtDNA control region sequence used in this

study was detected by the neutrality statistics: Fu’s FS statistic (FS ¼ �15�00,
P < 0�001) was significant and negative, indicating an excess of recent mutations
and consistent with a recent expansion (Fu, 1997). Similarly, the expansion event
is supported by non-significant results for Fu’sF* andD* (Table III). A significant
and negative Tajima’s D value also indicates population expansion D (Tajima,
1989a, b).

DISCUSSION

Populations of C. rhombosomoides examined in this study are genetically iso-
lated and show significant spatial genetic structuring that is unrelated to geo-
graphic distance between populations or the hierarchical way in which study
locations were placed in the riverine landscape. However, the results of the mis-
match analysis indicate that C. rhombosomoides has undergone a rapid population
expansion. Such a population expansion implies that the observed associations
among populations may not solely reflect contemporary relationships, but that
there may also be an historic signature imprinted on the population genetic struc-
ture and this possibility is supported by the anomalous finding that some
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FIG. 2. Scatter plot of genetic distance (FST) v. in-stream geographic distance for Cairnsichthys

rhombosomoides. Each symbol represents a pair-wise population comparison in one of three

categories; freshwater linked populations ( ), populations with an intermittent saltwater barrier
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populations, located at large inter-drainage distances across full saltwater bar-
riers, are not significantly divergent (AL–MU and AL–SLC). Given the level
of genetic divergence observed within drainages, it is unlikely that even small-
scale movements are made within drainages, let alone between drainages across
a saltwater marine barrier. Therefore, a feasible explanation for the observed lack
of genetic differentiation between these sites is the retention of ancestral haplo-
types from a period of historic connection.
Although genetic structure was not primarily associated with any a priori

hierarchical groupings, significant divergence was common across both contin-
uous and intermittent saltwater barriers. This agrees with studies of other
freshwater fish in the region that have demonstrated the importance of oceanic
salt barriers (Musyl & Keenan, 1992; Jerry, 1997; Wong et al., 2004) and inter-
mittent estuarine barriers (McGlashan & Hughes, 2000) to the creation of popu-
lation genetic structure. Importantly, C. rhombosomoides populations with
complete freshwater linkages were also significantly divergent at a level equiva-
lent, both spatially and in terms of sequence divergence, to that of populations
having physical saltwater barriers between them (Fig. 2).
That physical barriers are absent between divergent freshwater-linked sites

within drainages is unequivocal. For example, many tributaries of the lower
MulgraveRiver, including two sampled in this study (AL and FT), are<5 km apart
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FIG. 3. Parsimony network for mtDNA control region (domain 1) for Cairnsichthys rhombosomoides
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line represents one base pair change and dotted lines indicate inferred homoplasies (alternative

connections).

1182 P. A. THUESEN ET AL .

# 2008 The Authors

Journal compilation # 2008 The Fisheries Society of the British Isles, Journal of Fish Biology 2008, 72, 1174–1187



and have populations of C. rhombosomoides extending to within a 100 m of the
main river channel (pers. obs.). Considering the dispersal potential of other
closely related freshwater fishes (Hadfield et al., 1979; Wong et al., 2004) physical
barriers to gene flow could not be invoked to explain significant genetic structure
over such small distances. This strong pattern of genetic structure, over such

FIG. 4. Observed ( ) and expected ( ) mismatch distributions for Cairnsichthys rhombosomoides

mtDNA control region (domain 1) sequences under both (a) population expansion (upper graph)

and (b) stable (lower graph) expectations.

TABLE III. Neutrality and population expansion indices for Cairnsichthys rhomboso-
moides calculated from mtDNA control region sequences. Significant (P < 0�05) values

are given in bold

Control region
(domain 1)

Expectation under

Selection Range expansion

Nucleotide diversity (%) 0�12 Low Low
Expansion coefficent (S/d) 11�33 High
Tajima’s D �1�24 Significant (þ) Significant (�)
Fu and Li’s (1993) F* �2�02 Significant NS
Fu and Li’s (1993) D* �1�79 Significant NS
Fu’s (1997) FS �15�00 NS Significant
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small distances within catchments, is in contrast to most other investigations of
freshwater fish in the region, where populations are generally differentiated
between sub-catchments and/or drainages. Recent investigations have shown
that two species of dryland river catfish [Porochilus argenteus (Zietz, 1896) and
Neosilurus hyrtlii (Steindachner, 1867)] demonstrate population structuring inde-
pendent of barriers within a drainage (Huey et al., 2006). Here, the authors cite
irregular flood events that spread genes across the catchment, of which only
a small and potentially fixed sub-set will eventually persist in isolated waterholes
once floodwaters recede, as an explanation for genetic differentiation within
drainages.
It was beyond the scope of this study to determine the exact nature of puta-

tive non-physical barriers to gene flow. However, the authors suggest that there
are three potential, non-mutually exclusive, mechanisms for reducing gene flow
in this species:

(1) Competition: Competitive interactions with the closely related eastern rain-
bowfish [Melanotaenia splendida splendida (Peters, 1866)], an inhabitant of
large streams and lowland rivers may act to reduce gene flow among C.
rhombosomoides populations. The two species infrequently occur together
and when they do, zones of sympatry are typically very narrow (Pusey
et al., 2004). It has been proposed that C. rhombosomoides is the more ances-
tral of the two species (McGuigan et al., 2000; Sparks & Smith, 2004), imply-
ing that it is the original rainbowfish of the Wet Tropics and potentially
more widely distributed within individual river systems (Pusey et al., 2004).
If so, it is possible that subsequent relatively recent invasion by M. s. splen-
dida (Hurwood & Hughes, 2001) has acted to reduce C. rhombosomoides dis-
tribution through competitive interactions (Pusey et al., 2004).

(2) Predation: Downstream reaches of streams inhabited by C. rhombosomoides
have a diverse assemblage of piscivorus fishes that are mostly absent from
headwaters (Pusey & Kennard, 1996). If C. rhombosomoides experiences
strong predatory or competitive interactions within main river channels
and large tributaries, it may behaviourally shift to preferentially use pred-
ator or competitor-free smaller tributaries and upper headwaters (Fraser
et al., 1995). If so, barriers to gene flow could develop between these
upstream populations through strong selection against individuals that
attempt to migrate into larger stream areas or between tributary streams.

(3) Philopatry: Finally, populations of C. rhombosomoides may be constrained
by philopatry, an intrinsic behavioural/biological process in which fish
remain in their natal or optimal habitat. Philopatry in C. rhombosomoides
could result from preferences associated with a historic period of adap-
tation in isolation with the current observed distribution resulting from
‘stepping stone’ dispersal (Kimura & Weiss, 1964) following isolation.
Alternatively, philopatry could result from the development of in situ
preferences due to character displacement associated with either the compe-
tition or predation pressures described above. Philopatry is often invoked
to explain population structuring in salmonids among drainages.

Whatever the mechanisms preventing gene flow between populations, they
operate so effectively, and at such spatially restricted scales, that almost all
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examined populations of C. rhombosomoides can be considered separate ‘man-
agement units’ (Moritz, 1994). Such a result has significant management impli-
cations. This species is of high conservation significance (Pusey et al., 2004),
and while many, but not all, upland populations reside in National Parks or
within the estate of the World Heritage Area, lowland populations are not
so well protected. The lowlands of the Wet Tropics Bioregion are largely given
over to sugar cane cropping and urban development, resulting in significant im-
plications for the health and integrity of aquatic systems. Moreover, lowland
populations of this species are potentially threatened by alien fish species also
(Pusey et al., 2008). Given the small size of the streams in which C. rhomboso-
moides occurs, effective population size of isolated population units is likely to
be small and inherently prone to extinction in the absence of colonization from
elsewhere.
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work was funded by the Cooperative Research Centre for Tropical Rainforest Ecology
and Management and a James Cook University student grant. All work was authorised
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James Cook University (JCU) ethics approval A889_04.
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